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Stable spatially periodic patterns of ion channels in biomembranes
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Ion flow through channels in a membrane may cause lateral gradients of the electrical potential which give
rise to electrophoresis of charged channels. Coupled dynamics of the channel density and of the voltage across
the membrane together with a binding-release reaction for the proteins leads via a pattern forming instability
into a spatially periodic channel density. We derive near the onset of the spatial periodic pattern a Ginzburg-
Landau equation and determine the parameter ranges with continuous transitions to periodic patterns. Above
such a continuous transition the periodic patterns are stable within a wave-number band and within a finite

range of the control parameter.

PACS number(s): 87.10.+e, 47.20.—k, 66.10.—x

L. INTRODUCTION

Spatiotemporal pattern formation is ubiquitous in systems
driven away from thermal equilibrium [1,2]. Many of those
structures are of universal character. Membranes represent a
main structural component for the complex architecture of
biological systems. A basic question of biophysics is how far
they contribute to the pattern formation in cells in early de-
velopment and in learning processes of adult organisms. This
aspect has been neglected in the extensive discussion of bio-
logical morphogenesis [3].

Two central physical ideas in the field of biomembranes
are the fluid-mosaic concept [4], which assumes that protein
molecules are free to diffuse along the fluid bimolecular
layer of lipid, and the channel concept [5], which implies
that the conductance of membranes is made up of discrete
ion channels formed by protein molecules. It was found that
a fluid-mosaic of ion channels has an intrinsic propensity for
self-organization [6]. When a concentration gradient of salt
across the membrane exceeds a certain threshold, a con-
served number of freely movable ion channels may organize
into metastable periodic patterns which finally evolve into
global clusters [7-9].

The model of a fluid-mosaic of ion channels neglects two
important properties of real biomembranes: (a) An interac-
tion with signal molecules may induce a reversible molecular
transition which opens or closes an ion channel [5], and (b)
an interaction with the cell skeleton may immobilize ion
channels [10]. As a first step towards a more complete treat-
ment of self-organization in membranes we consider here an
extension of the original model which accounts for immobi-
lization and for closing of ion channels. For the sake of sim-
plicity we choose a model which integrates the two pro-
cesses: We take into account a reversible binding-release
reaction of ion channels with the cell skeleton and assume
that this interaction induces a closing of the channels. We
find that the mobile molecules may self-organize again, how-
ever, with qualitatively new features: (a) stable periodic pat-
terns are formed above threshold; (b) this formation of sta-
tionary periodic patterns belongs to the same universality
class as, for example, convection rolls in hydrodynamic sys-
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tems; (c) the transition into the periodic pattern is of first or
second order depending on the equilibrium constant and the
relaxation time of the binding-release reaction.

II. SYSTEM

We consider a membrane which separates a thin layer of
electrolyte from the electrolytic bath as in a planar cable
(Fig. 1) [11]. This geometry may refer to two biological situ-
ations. (i) A cell membrane is in close contact to another cell.
The thin layer is given by the extracellular cleft and the bath
is the cytoplasm. A particular important example of this case
is the post-synaptic membrane of a neuronal synapse. (i) A
membrane cable occurs in the dendrites and axons of neu-
rons. In that case the narrow cylindric cytoplasm plays the
role of a one-dimensional cleft and the extracellular space
plays the role of the bath.

Ion channels are embedded in the membrane. We assume
that they interact with the cell skeleton in a reversible
binding-release (BR) reaction (Fig. 1) and that binding closes
the channels by a conformational change. We describe the
reaction by a simple scheme with the two rate constants k
and k', i.e., by an equilibrium constant Kzr=k/k’' and a
relaxation time 755=(k+k') L.

k
CHbound N CHfree

closed ~ open *
kl

The free channels undergo Brownian motion along the mem-
brane with a diffusion coefficient D. They have an electrical
conductance A. The channels are selective for ions with an
unequal distribution across the membrane described by a
Nernst-type potential E. The proteins bear an electrophoretic
charge g such that they move in a lateral electrical field. The
current through the mobile channels and through a homoge-
neous leak conductance of the membrane affects the local
voltage in the cleft. An inhomogeneous distribution of the
channels gives rise to lateral gradients of the voltage. The
mobile channels move in those fields by electrophoresis.
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FIG. 1. One-dimensional membrane model. The fluid membrane
separates a narrow cleft of electrolyte (in a groove) from a bulk
electrolytic phase. Membrane proteins are embedded in the lipid
bilayer (inset). They are mobile along the membrane (diffusion co-
efficient D), they form selective ion channels across the membrane
(conductance A), they bear an electrophoretic charge g, and they
interact with a filamentous substrate of the membrane (cell skel-
eton) in a binding-release reaction with rate constants £ and k’'.
Binding closes the channels by a conformational change. The sys-
tem is driven by a concentration gradient of those ions which are
conducted by the channels (Nernst-type potential £). The geometry
of the model refers to the biological situations of a cell-cell-contact
(post-synaptic membrane of a synapse) and of a cylindric cellular
cable (neuron dendrite). The cleft of the model corresponds to the
extracellular space in the first case, whereas it corresponds to the
narrow cytoplasm in the second case. The structure of the model is
described by the density of mobile channels n(x,?) and by the volt-
age in the cleft v(x,t) as a function of space x and time ¢.

A. Basic equations

The local density n(x,t) of free open channels (particles
per unit length) depends on the diffusion, on electrophoretic
drift, and on the dynamics of the binding-release reaction.
Assuming that the equilibrium density » is kept constant by
a homogeneous reservoir ng=const of bound channels with
f’-l:KBRﬁB we obtain

om =D .| dn+ ov| — —(n—n).

q
kgT " TBR ®
The voltage v in the cleft is obtained from Kirchhoff’s
law for each element of the cable. Taking into account the
current across the membrane and along the core of the cable
we obtain the Kelvin equation with the membrane capaci-
tance per unit length C, the resistance of the cleft per unit
length R, and the leak conductance of the membrane per unit
length G.

1
C(?,U=E&fv~Gv—An(v—E). 2)

B. Scaled equations

We scale Egs. (1) and (2) by introducing dimensionless
coordinates for space x' = x/N and time ¢' = ¢t/ 7 with
the average range of an electrical perturbation
N = [R(An+G)] 2 and the time constant of displacement
7=\?/D. We use normalized variables for the particle den-
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FIG. 2. The solid lines are the neutral curves a(1— a)¢€y(k) for
different values of the rate parameter 8 and the dashed curve is the
location of the minimum of these neutral curves as a function of

B: (kc,€)(B)-

sity N=(n—n)/n and voltage V=(v—vg)q/kgT with the
resting voltage vg=FEAn/(An+G). Introducing the nor-
malized relaxation time 7,=RCD we obtain the normalized
reactive Smoluchowski-Kelvin equations

19,rN=z9x,[&x/N+(l+N)8X,V]—BN, (3)
Ty, V=[8>,—1]V—a(1—a) eN— aVN. (4)

The dynamics of the system is controlled by three param-
eters: (i) the density parameter « = A i /(AR + G) which
characterizes the equilibrium of the binding-release reaction;
(ii) the rate parameter 8= 7/ 7z which characterizes the dy-
namics of the reaction; (iii) the control parameter
€= —qFE/(kpT) which characterizes the distance from ther-
mal equilibrium. Since the spread of the voltage is fast com-
pared to the diffusion of ion channels we take 7,=0 in the
following. For simplicity the primes of the new coordinates
x' and ¢’ are suppressed in the following.

II1. ONSET OF PERIODIC PATTERNS

We test the stability of the homogeneous equilibrium den-
sity n=n of the mobile channels (N =0) against small per-
turbations. Therefore we transform the linear part of Egs. (3)
and (4) with the ansatz (N, V)= (8N, V) e“' ¢'** and obtain
a dispersion relation

o, a(l—a)e

w=—k (1 T ) 5)

The homogeneous state becomes unstable against periodic

perturbations of a wave number £ when the real part of w

passes zero as a function of the control parameter €. From

the condition of vanishing real part Re(w)=0 one obtains
the neutral curve [1,2]

(6)

€9

1+ k2 B
:m(”k—z)'

A set of curves €y(k,) is shown in Fig. 2 for various values
of the rate parameter 8. The minimum of the neutral curve
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defines the most unstable wave number k() and the critical
value of the control parameter €.(«,3)

e.=(1+VB)¥[a(1-a)]. )

For € values above the curve €y(k,@,B) the growth rate
Re(w) is positive and the homogeneous channel distribution
becomes unstable against growing periodic perturbations
with wave numbers lying inside the neutral curve. For
B>0 the pattern sets in with a finite wave number. This is in
contrast to the earlier work [6—8], where the B parameter
was neglected and the mode k=0 was most unstable. This
difference is due to the fact that there exists now no conser-
vation of the number of mobile ion channels due to the ex-
change with the reservoir of bound channel proteins.

ke= BV,

IV. AMPLITUDE EQUATION

The properties of the structural transition may be evalu-
ated in the neighborhood of the critical point (k.,€.) via a
perturbation expansion. It leads for the complex amplitude
A(x,t) of the critical mode

(Nyml) oty g% ik
V—EO(AeC-f-Ae *) 8)

with Eg=—(1+ \/E) to an equation, the so called amplitude
or Ginzburg-Landau equation [12,1,2]

Tod A=[n+ & — y|AI*1A. ©9)

The small parameter 7 is the difference between the control
parameter € and its critical value €.: n=(e—¢€.)/€.. The
relaxation time 7, and the coherence length &, can be de-
rived by a Taylor expansion of the dispersion relation (5)
around the critical point (k.,€.): 7'51 =(dw/d€). €. and
£2=(1/2¢,)(0*€,/Ik>). The nonlinear coefficient y deter-
mines the transition behavior into the periodic state (8) and
can be calculated by an approach which is discussed, e.g., in
Refs. [2,12,13]. This amplitude equation is rather universal
and holds for stationary and continuous bifurcations with a
critical wave number k.>0 as they arise, e.g., in thermal or
electroconvection [1,2,14].

Stationary patterns on membranes

For the coefficients of the amplitude equation we obtain
for the reactive Smoluchowski-Kelvin equation

_ 1 .4
T BNE e

1 6a2—(2+2\JB—a)?
773 1+VB

(10)

2
+ ﬁ(wﬁ—zoﬁ 1)(VB—2a+1)|. (1)

The linear coefficients depend on the rate parameter 3 only.
For faster binding-release reactions the relaxation time and
also the correlation length become smaller. The nonlinear
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FIG. 3. The line separates in the 8-« plane the areas where the
bifurcation into the periodic state is of second order (>0, super-
critical) or of first order (y<<0, subcritical).

coefficient depends on the rate parameter 8 and on the den-
sity parameter «. It is quite remarkable that the relaxation
time of the pattern as well as the nonlinear coefficient y both
diverge for a frozen binding-release reaction (8—0).

In the regime y>0 the Ginzburg-Landau equation has
stationary solutions for >0 with Q=k—k,

A=Fe'® with F2=(n—£0%/y, (12)
The amplitude is maximal in the center of the band of the
instability and vanishes at the edges of the band
Q*=y/ 53. This solution (12) exists for y>0 above thresh-
old (%#>0), whereas it exists for y<<0 only for 7<<0. The
latter can only happen in the case of a first order transition
where the finite amplitude F? below threshold belongs to the
unstable branch [1,2].

Supercritical and subcritical bifurcations are separated by
the tricritical line y(«a, 8)=0, which is plotted in Fig. 3. It is
apparent that a phase transition of second order occurs only
for nonzero values of the rate parameter 8, while the transi-
tion is of first order for the frozen reaction 8=0 [8]. The
type of phase transition for >0 and y>0 in the membrane
belongs to the same universality class as the formation of
rolls in thermal convection (see, e.g., [1,2]) or in electrocon-
vection in nematic liquid crystals [14] where the amplitude
equation (9) has the same form with different expressions for
the coefficients, of course.

V. SECONDARY BIFURCATION

In order to test the solution given in Eq. (12) against small
perturbations with arbitrary wave numbers (up to g~k,),
one has to start with the following ansatz into Egs. (3) and

(4):

i”). (13)

p

N 1
( V) = (EO)ZACOS[(/(C+Q)X]+

The explicit form of  the perturbation is
N,, V)= explwt+igx)=M _ (N, V)explikIx]. Linearizing
Egs. (3) and (4) with respect to the small perturbations N,
and V; and calculating w(7,q9,F,Q), one will recover by
varying O and keeping g small the Eckhaus instability
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FIG. 4. At the upper curve €,,.(8) the solution (12) taken at the
bandcenter Q =0 becomes unstable against short wavelength per-
turbations. The B values, where €,.(8B) meets the lower curve
(threshold) and the nonlinear coefficient y=0 vanishes
(a=0.683).

boundary (see, e.g., Refs. [1,2]). Keeping, e.g., Q=0 at the
band center, for increasing values of 7 the dispersion relation
w(7,9,F,Q) exhibits a maximum at g,,~ k. which becomes
at some 7..(,B) positive. The curve €,..(B)
=€.(B)(1+ n,,..) restricts the stability range for the periodic
pattern and is plotted in Fig. 4. The instability occurring
above 74..(a,B) may lead to clustering or other complex
spatial distributions of the ion channels (these details will be
discussed in [15]). The stable % range of the periodic state
(8) shrinks to zero at the line y=0 in Fig. 3, where the
bifurcation changes from a supercritical to a subcritical one.

VI. DISCUSSION AND CONCLUSION

Driven by a concentration gradient of ions across the
membrane, mobile charged ion channels in membranes may

PETER FROMHERZ AND WALTER ZIMMERMANN 51

form patterns far from equilibrium. The gating of the ion
channels by signal molecules and the immobilization caused
by the cell skeleton leads to the formation of a periodic
channel-density pattern, instead of channel-clustering dis-
cussed in previous investigations [8,9]. (While we have dis-
cussed for the sake of simplicity the integrated version of
both interactions, patterns may also occur in the presence of
one interaction alone.) The onset of the pattern may be of
first or second order depending on the actual parameters, and
in the range of second order transition there exists a subre-
gime with stable periodic patterns. In two spatial dimensions
the pattern formation is even richer, because competitions
between various possible patterns may arise, such as between
stripes, squares, or hexagons [15]. A structured cell skeleton
and/or two different types of ion channels can lead to an
even richer dynamics of the pattern, indicating that biomem-
branes may exhibit a rich manifold of patterns, depending on
details of the biochemical interactions [15—-17].

Considering the complicated interactions in biological
systems, it might be difficult to distinguish patterns induced
by our mechanism from conservative mechanisms of aggre-
gation which are operative in a biological system. At a first
step, well defined model membrane systems are needed, such
as in Ref. [11], to verify these patterns. It seems worthwhile
to accept the challenges of further investigations, especially
with regard to the prospects of getting a biological mem-
brane system available for quantitative investigations, which
offers possibly alternative aspects of pattern formation as
well.
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